
Yukiko Maki(Kuroda)¹¹, Miki Fujimoto¹¹, Kayo Nagahama¹¹, Ryuji Kajiª³, Takao Mitsui¹⁰²

¹¹ Department of Clinical Research, Tokushima National Hospital, National Hospital Organization, 1354 Shikiji, Kamojima, Yoshinogawa, Tokushima 776-8585 Japan
⁹² Department of Neurology, Tokushima National Hospital, National Hospital Organization, 1354 Shikiji, Kamojima, Yoshinogawa, Tokushima 776-8585 Japan
³ Department of Neurology, Tokushima University Hospital, 2-50-1 Kuramoto-cho, Tokushima 770-8503 Japan

Received 13 March 2017; received in received from 13 March 2017; accepted 15 March 2017

Abstract

Parkin is a neuroprotective protein with many functions, including maintaining mitochondrial homeostasis. Recent evidence suggests that Parkin is recruited from the cytoplasm to damaged mitochondria with low membrane potential. We found that intracellular localization of Parkin changed with cellular growth phase. Parkin was preferentially localized in the mitochondria of cultured cells in the late log phase of growth. The mitochondria with large amounts of Parkin showed preserved membrane potentials even during treatment with carbonyl cyanide m-chlorophenylhydrazone. Elucidation of the cause and pathogenesis of Parkinson’s disease whole, may lead to the development of new treatments. Analysis of the gene PARK2 should be conducted in the future.

Introduction

Parkinson’s disease (PD) is a prevalent age-associated progressive neurodegenerative movement disorder primarily characterized by the death of nigrostriatal dopaminergic neurons and the presence of intracytoplasmic proteinaceous inclusions, termed Lewy bodies. Although PD is a sporadic disorder of unclear etiology, recent studies have demonstrated the importance of genetic contributions to PD that may provide insight into the mechanistic details of disease pathogenesis. Mutation of the gene encoding Parkin (PARK2) plays a major etiopathogenic role in autosomal recessive juvenile parkinsonism [1]. PARK2 contains RING finger motifs, and functions as a ubiquitin–protein ligase for protein degradation [2,3].

Recently, an important insight has been obtained into the mechanism by which Parkin regulates mitochondrial homeostasis. Parkin translocates from the cytoplasm to accumulate on depolarized mitochondria and promotes their degradation by autophagy [4]. Several studies have suggested that PTEN-induced putative kinase 1 (PINK1) is required for Parkin-mediated mitochondrial autophagy, wherein it recruits Parkin to dysfunctional mitochondria and promotes their degradation [5-7]. However, we and others have reported that Parkin can associate directly with mitochondria under basal conditions [8-10]. Recent studies have detected Parkin in the mitochondria of untreated cultured cells, although it is mainly present in the cytoplasm [5,10-12]. We previously reported that Parkin is localized in the mitochondrial matrix during proliferation and is rapidly released to the cytosol in differentiated or quiescent states. We also found that Parkin enhances mitochondrial transcription and replication in vitro and in vivo [9], which was confirmed by a recent study [10].

We reported that Parkin was present in both the cytoplasm and mitochondria at basal conditions and that its intracellular
localization changes with growth phase. Parkin was mainly located in the cytoplasm from the lag growth phase to the early log phase, but a portion of Parkin appeared to be located in the mitochondria from the late log growth phase to the plateau phase. Unlike previous reports, its mitochondrial localization was not associated with reduced membrane potential during the log growth phase.

Elucidation of the cause and pathogenesis of Parkinson's disease whole, may lead to the development of new treatments. Analysis of the gene PARK2 should be conducted in the future.

Materials and Methods

Subjects and Sample Collection

We analyzed the parkin gene in patients with familial Parkinson’s disease. The subjects were patients with Parkinson's disease at Tokushima National Hospital. They were juvenile-onset patients and/or had a family history of the disease or were in a consanguineous marriage. Healthy volunteers were used as subjects.

Ethics committee

This study was carried out with the approval of the Tokushima National Hospital Ethical Review Board.

DNA Isolation

Peripheral blood mononuclear cell (PBMC) was isolated from fresh whole blood with heparin. Total DNA in PBMCs was extracted using the QIAamp DNA Blood Mini Kit (QIAGEN Inc., Germany) following the manufacturer’s instructions.

Parkin PCR

All PCR amplifications were performed in a TaKara PCR Thermal cycler (TaKaRa Inc., Japan) in standard mixtures of 25 μL containing 1x PCR buffer, 10 pmol of each primer, 2.5 mM dNTP, 2.5 U of Taq DNA polymerase, The PCR program included one incubation at 95 °C for 5 min and 40 amplification cycles (95 °C for 60 s, 53 °C for 60 s and 72 °C for 60 s), followed by one final extension incubation of 7 min at 72 °C. The PCR products were separated on a 1.7% agarose gel, stained with ethidium bromide and visualized on a UV transilluminator (ATTO Printgraph2M., Tokyo Japan).

Results

As shown in Table 1, we analyzed 10 patients (6 male, 4 female) 2017 2 month present. Their age was 61.3±11.77 (mean±SD) years old. (male 59.5±10.65, female 64.0±14.49). Onset age was 53.13±14.26 (male 54.5±12.77, female 51.75±17.5). Six cases had a family history of the disease. Consanguineous marriage was not observed. We did not find mutations in the Parkin gene, also all cases.

Discussion

Elucidation of the cause and pathogenesis of Parkinson’s disease whole, led to the development of new treatments.

References


5. Narendra DP, Jin SM, Tanaka A, et al. PINK1 is selectively stabilized on impaired


Table 1

<table>
<thead>
<tr>
<th>No.</th>
<th>Sex</th>
<th>Birth date</th>
<th>Age 2016/12/31</th>
<th>Age of onset</th>
<th>Disease</th>
<th>Family history</th>
<th>Consanguinity</th>
<th>Blood drawing date</th>
<th>PARK2</th>
<th>Klokinl</th>
<th>biopsy</th>
</tr>
</thead>
<tbody>
<tr>
<td>344</td>
<td>F</td>
<td>1938/4/30</td>
<td>78</td>
<td>77</td>
<td>PD</td>
<td>+</td>
<td>–</td>
<td>2016/3/1</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>345</td>
<td>M</td>
<td>1938/10/17</td>
<td>60</td>
<td>43</td>
<td>PD</td>
<td>+</td>
<td>–</td>
<td>2016/3/10</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>346</td>
<td>F</td>
<td>1964/11/4</td>
<td>52</td>
<td>50</td>
<td>PD</td>
<td>–</td>
<td>–</td>
<td>2016/3/15</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>347</td>
<td>M</td>
<td>1940/5/17</td>
<td>76</td>
<td>67</td>
<td>PD</td>
<td>+</td>
<td>–</td>
<td>2016/4/8</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>348</td>
<td>M</td>
<td>1964/4/20</td>
<td>57</td>
<td>44</td>
<td>PD</td>
<td>–</td>
<td>–</td>
<td>2016/5/16</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>349</td>
<td>F</td>
<td>1955/10/21</td>
<td>51</td>
<td>41</td>
<td>PD</td>
<td>–</td>
<td>–</td>
<td>2016/5/17</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>350</td>
<td>M</td>
<td>1967/11/9</td>
<td>49</td>
<td>2</td>
<td>PD</td>
<td>–</td>
<td>–</td>
<td>2016/6/30</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>351</td>
<td>M</td>
<td>1964/1/19</td>
<td>52</td>
<td>3</td>
<td>PD</td>
<td>+</td>
<td>–</td>
<td>2016/7/29</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>352</td>
<td>F</td>
<td>1941/6/6</td>
<td>75</td>
<td>29</td>
<td>PD</td>
<td>+</td>
<td>–</td>
<td>2016/9/27</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>353</td>
<td>M</td>
<td>1946/9/28</td>
<td>68</td>
<td>64</td>
<td>PD</td>
<td>+</td>
<td>–</td>
<td>2016/11/29</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>